How a Translator Works

CS 222: Programming Languages



Translators

The job of a translator is to convert data in a source language to an
equivalent form in a target language.
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e Assemblers

Assembly language =% Machine code
Decrement the B

processor register by one: DEC B 00000101

Load AL register with
61 hexadecimal value: MOV AL, 61h 10110000 01100001



More Translators

e Compilers High-level language =———3» Machine code of physical processor
* Programs in the source language are compiled.
* Produces executable program @0
* Ex: GCCis a compiler for C, C++, Objective-C, Fortran, Ada

* Interpreters  High-levellanguage —  Machine code of virtual machine
* Programs in the source language are interpreted.
* Parses the source code into intermediate representation which is

immediately executed
* Ex: Thonny is an interpreter for Python “ G’ﬁ

 Combination thereof
e Ex: Just-in-time (JIT) compilation
* Java compiler translates source code to byte code to be executed by JVM
* JVM can compile byte code to machine code



Four Translator Design Principles

1. Correctness Principle

The runtime behavior of a translated form must be that described by the input
being translated.

2. Early-warning Principle

Both syntax (form) and semantic (use) errors should be identified and reported at
the earliest possible point in the translation process.

* Type errors are identified via type checking.

 Statically typed languages type check at translation time
* Ex:Java, C, C++

* Dynamically typed languages type check at execution time
e Ex: Python, Ruby, Lisp

3. Efficiency Principle
A translator must ensure that a translated form makes sensible and efficient use
of the computational resources in the execution environment.

4. Portability Principle

A translator should be designed so that it can be ported to a new execution
environment with a minimum of effort.
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