
How a Translator Works
CS 222: Programming Languages



Translators
The job of a translator is to convert data in a source language to an 
equivalent form in a target language. 

• Assemblers
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translator

DEC B 00000101
Decrement the B 
processor register by one:

Load AL register with 
61 hexadecimal value: MOV AL, 61h 10110000 01100001

Assembly language Machine code



More Translators
• Compilers

• Programs in the source language are compiled.
• Produces executable program
• Ex: GCC is a compiler for C, C++, Objective-C, Fortran, Ada

• Interpreters
• Programs in the source language are interpreted.
• Parses the source code into intermediate representation which is 

immediately executed
• Ex: Thonny is an interpreter for Python

• Combination thereof
• Ex: Just-in-time (JIT) compilation
• Java compiler translates source code to byte code to be executed by JVM
• JVM can compile byte code to machine code
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High-level language Machine code of physical processor

High-level language Machine code of virtual machine



Four Translator Design Principles
1. Correctness Principle

The runtime behavior of a translated form must be that described by the input 
being translated.

2. Early-warning Principle
Both syntax (form) and semantic (use) errors should be identified and reported at 
the earliest possible point in the translation process.
• Type errors are identified via type checking.
• Statically typed languages type check at translation time

• Ex: Java, C, C++
• Dynamically typed languages type check at execution time

• Ex: Python, Ruby, Lisp

3. Efficiency Principle
A translator must ensure that a translated form makes sensible and efficient use 
of the computational resources in the execution environment. 

4. Portability Principle
A translator should be designed so that it can be ported to a new execution 
environment with a minimum of effort. 
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Phases of Translation
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Phases of Translation
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Phases of Translation
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Phases of Translation
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Phases of Translation
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Phases of Translation
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Phases of Translation
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