
How a Translator Works
CS 222: Programming Languages



Translators
The job of a translator is to convert data in a source language to an 
equivalent form in a target language. 

• Assemblers

2

translator

DEC B 00000101
Decrement the B 
processor register by one:

Load AL register with 
61 hexadecimal value: MOV AL, 61h 10110000 01100001

Assembly language Machine code



More Translators
• Compilers

• Programs in the source language are compiled.
• Produces executable program
• Ex: GCC is a compiler for C, C++, Objective-C, Fortran, Ada

• Interpreters
• Programs in the source language are interpreted.
• Parses the source code into intermediate representation which is 

immediately executed
• Ex: Thonny is an interpreter for Python

• Combination thereof
• Ex: Just-in-time (JIT) compilation
• Java compiler translates source code to byte code to be executed by JVM
• JVM can compile byte code to machine code

3

High-level language Machine code of physical processor

High-level language Machine code of virtual machine



Four Translator Design Principles
1. Correctness Principle

The runtime behavior of a translated form must be that described by the input 
being translated.

2. Early-warning Principle
Both syntax (form) and semantic (use) errors should be identified and reported at 
the earliest possible point in the translation process.
• Type errors are identified via type checking.
• Statically typed languages type check at translation time

• Ex: Java, C, C++
• Dynamically typed languages type check at execution time

• Ex: Python, Ruby, Lisp

3. Efficiency Principle
A translator must ensure that a translated form makes sensible and efficient use 
of the computational resources in the execution environment. 

4. Portability Principle
A translator should be designed so that it can be ported to a new execution 
environment with a minimum of effort. 

4



Phases of Translation

5

Analysis Synthesis

ch
ar

ac
te

r s
tr

ea
m

Final 
Translated 

Form
Source 

Program

-c
re

at
es

-



Phases of Translation

6

Analysis Synthesis

Syntax Checking
Semantic 
Analysis

ch
ar

ac
te

r s
tr

ea
m

Final 
Translated 

Form
Source 

Program

-c
re

at
es

-



Phases of Translation

7

Analysis Synthesis

Syntax Checking
Semantic 
Analysis

Lexical 
analysis

Syntax 
analysis

ch
ar

ac
te

r s
tr

ea
m

Final 
Translated 

Form
Source 

Program

-c
re

at
es

-



Phases of Translation

8

Analysis Synthesis

Syntax Checking
Semantic 
Analysis

Lexical 
analysis

Syntax 
analysis

ch
ar

ac
te

r s
tr

ea
m

token stream Final 
Translated 

Form
Source 

Program

-c
re

at
es

-

Tokenizer Parser



Phases of Translation

9

Analysis Synthesis

Syntax Checking
Semantic 
Analysis

Lexical 
analysis

Syntax 
analysis

ch
ar

ac
te

r s
tr

ea
m

token stream Final 
Translated 

Form
Source 

Program

-c
re

at
es

-

Tokenizer Parser

Syntax 
Tree

Symbol 
Table

-creates-

-creates-



Phases of Translation

10

Analysis Synthesis

Syntax Checking
Semantic 
Analysis

Lexical 
analysis

Syntax 
analysis

ch
ar

ac
te

r s
tr

ea
m

token stream Syntax 
Tree

Symbol 
Table

Final 
Translated 

Form
Source 

Program
-creates-

-creates-

-c
re

at
es

-

Tokenizer Parser

Semantic 
Code Checker



Phases of Translation

11

Analysis Synthesis

Syntax Checking
Semantic 
Analysis

Lexical 
analysis

Syntax 
analysis

Intermediate 
Code 

Generation

Object Code 
Optimization

ch
ar

ac
te

r s
tr

ea
m

token stream Syntax 
Tree

Intermediate 
Code

Symbol 
Table

Final 
Translated 

Form
Source 

Program
-creates-

-creates-

-c
re

at
es

-

-c
re

at
es

-

Tokenizer Parser

Object Code 
Generator

Semantic 
Code Checker

Intermediate 
Code Generator


