How a Translator Works

CS 222: Programming Languages

Translators

The job of a translator is to convert data in a source language to an
equivalent form in a target language.

| —— o [s | o |
e .

s [o]
O === ==

e | —> RELREd —> [fee

0= m

= mo

= o
— s | | |
== == = @

e Assemblers

Assembly language =% Machine code
Decrement the B

processor register by one: DEC B 00000101

Load AL register with
61 hexadecimal value: MOV AL, 61h 10110000 01100001

More Translators

e Compilers High-level language =———3» Machine code of physical processor
* Programs in the source language are compiled.
* Produces executable program @0
* Ex: GCCis a compiler for C, C++, Objective-C, Fortran, Ada

* Interpreters High-levellanguage — Machine code of virtual machine
* Programs in the source language are interpreted.
* Parses the source code into intermediate representation which is

immediately executed
* Ex: Thonny is an interpreter for Python “ G’ﬁ

 Combination thereof
e Ex: Just-in-time (JIT) compilation
* Java compiler translates source code to byte code to be executed by JVM
* JVM can compile byte code to machine code

Four Translator Design Principles

1. Correctness Principle

The runtime behavior of a translated form must be that described by the input
being translated.

2. Early-warning Principle

Both syntax (form) and semantic (use) errors should be identified and reported at
the earliest possible point in the translation process.

* Type errors are identified via type checking.

 Statically typed languages type check at translation time
* Ex:Java, C, C++

* Dynamically typed languages type check at execution time
e Ex: Python, Ruby, Lisp

3. Efficiency Principle
A translator must ensure that a translated form makes sensible and efficient use
of the computational resources in the execution environment.

4. Portability Principle

A translator should be designed so that it can be ported to a new execution
environment with a minimum of effort.

Phases of Translation

Analysis

Synthesis

character stream

Source
Program

-Creates-

v

Final
Translated
Form

Phases of Translation

Analysis

Syntax Checking

Semantic
Analysis

Synthesis

character stream

Source
Program

-Creates-

v

Final
Translated
Form

Phases of Translation

Analysis Synthesis
Syntax Checking

Semantic

Analysis =
- Lexica.l Syntax |
< analysis analysis 0
Q =
2 e
s
o
< . 4
O Final
Source Translated
Program Form

Phases of Translation

Analysis Synthesis
Syntax Checking
. Semantic
Tokenizer Parser .
Analysis]

- Lexica.l Syntax |

= analysis analysis %

= I

@ o

(- (@]

Q]

1S

©

© A 4

S token stream Final

Source Translated
Form

Program

Phases of Translation

Analysis Synthesis
Syntax Checking
. Semantic
Tokenizer Parser Srelar _
LEXical Syntax

S analysis analysis 4
2 g
Z Q
2 e
s

©

2 v
G token stream Syntax Final

Source —creates—> Tree Translated
Program Form
Symbol
—creates- | Table

Phases of Translation

Analysis Synthesis
Semantic
Syntax Checking Code Checker
i Semantic
Tokenizer Parser '

Analysis _
- > Lexica.l Syntax I
= analysis 5 analysis &
: +
5 Q
: (@]
GJ 1
8]
©
: \ 4
C token stream Syntax e
>ource —creates—> Tree Translated
o Form

—>
-creates-

Symbol
Table

10

Phases of Translation

Analysis Synthesis
Semantic Intermediate Object Code
Syntax Checking Code Checker | | Code Generator Generator
. Semantic Intermediate _
Tokenizer Parser . Cod Object Code
Analysis oae Obtimization |
: ptimization
Lexical S Generation
c - . yntax |
© analysis analysis %
49—3, A A A ©
wn (}) 8
(-) O
& = .
O)
o 5
2 v N
® token stream Syntax Intermediate Final
>ource creates-]| Tree Code Translated
Program Form
Symbol
-creates- | Table

11

